SfePy - Simple Finite Elements in Python

Short Introduction . . .

Robert Cimrman1 Ondřej Čertík2

1Department of Mechanics & New Technologies Research Centre
University of West Bohemia in Plzeň, Czech Republic

2Institute of Physics, Academy of Sciences of the Czech Republic
& Charles University in Prague, Czech Republic

Introduction

- SfePy = simple finite elements in Python
 - general finite element analysis software
 - solving systems of PDEs
- BSD open-source license
- available at
 - http://sfepy.org (developers)
 - mailing lists, issue (bug) tracking
 - we encourage and support everyone who joins!
 - http://sfepy.kme.zcu.cz (project information)
- selected applications:
 - homogenization of porous media (parallel flows in a deformable porous medium)
 - acoustic band gaps (homogenization of a strongly heterogenous elastic structure: phononic materials)
 - shape optimization in incompressible flow problems
 - finite element formulation of Schrödinger equation
Introduction

- **SfePy** = simple finite elements in Python
 - general finite element analysis software
 - solving systems of PDEs
- BSD open-source license
- available at
 - http://sfepy.org (developers)
 - mailing lists, issue (bug) tracking
 - we encourage and support everyone who joins!
 - http://sfepy.kme.zcu.cz (project information)
- selected applications:
 - homogenization of porous media (parallel flows in a deformable porous medium)
 - acoustic band gaps (homogenization of a strongly heterogenous elastic structure: phononic materials)
 - shape optimization in incompressible flow problems
 - finite element formulation of Schrödinger equation
Notes on Programming Languages

Rough Division

- **compiled (fortran, C, C++, Java, ...)**

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>• speed</td>
<td>• (often) complicated build process, recompile after any change</td>
</tr>
<tr>
<td>• large code base (legacy codes)</td>
<td>• low-level ⇒ lots of lines to get basic stuff done</td>
</tr>
<tr>
<td>• tradition</td>
<td>• code size ⇒ maintenance problems</td>
</tr>
<tr>
<td></td>
<td>• static!</td>
</tr>
</tbody>
</table>

- **interpreted or scripting (sh, tcl, matlab, perl, ruby, python, ...)**

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>• no compiling</td>
<td>• many are relatively new</td>
</tr>
<tr>
<td>• (very) high-level ⇒ a few of lines to get (complex) stuff done</td>
<td>• not known as useful in many scientific communities</td>
</tr>
<tr>
<td>• code size ⇒ easy maintenance</td>
<td>• lack of speed</td>
</tr>
<tr>
<td></td>
<td>• dynamic</td>
</tr>
<tr>
<td></td>
<td>• (often) large code base</td>
</tr>
</tbody>
</table>
Notes on Programming Languages

Rough Division

- compiled (fortran, C, C++, Java, ...)

Pros
- speed
- large code base (legacy codes)
- tradition

Cons
- (often) complicated build process, recompile after any change
- low-level ⇒ lots of lines to get basic stuff done
- code size ⇒ maintenance problems
- static!

- interpreted or scripting (sh, tcl, matlab, perl, ruby, python, ...)

Pros
- no compiling
- (very) high-level ⇒ a few of lines to get (complex) stuff done
- code size ⇒ easy maintenance
- dynamic!
- (often) large code base

Cons
- many are relatively new
- not known as useful in many scientific communities
- lack of speed
- lack of speed
Notes on Programming Languages

Rough Division

- **compiled** (fortran, C, C++, Java, ...)

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>- speed</td>
<td>- (often) complicated build process, recompile after any change</td>
</tr>
<tr>
<td>- large code base (legacy codes)</td>
<td>- low-level ⇒ lots of lines to get basic stuff done</td>
</tr>
<tr>
<td>- tradition</td>
<td>- code size ⇒ maintenance problems</td>
</tr>
</tbody>
</table>

- **interpreted or scripting** (sh, tcl, matlab, perl, ruby, python, ...)

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>- no compiling</td>
<td>- many are relatively new</td>
</tr>
<tr>
<td>- (very) high-level ⇒ a few of lines to get (complex) stuff done</td>
<td>- not known as useful in many scientific communities</td>
</tr>
<tr>
<td>- code size ⇒ easy maintenance</td>
<td>- lack of speed</td>
</tr>
<tr>
<td>- dynamic!</td>
<td></td>
</tr>
</tbody>
</table>
Notes on Programming Languages
Rough Division

- compiled (fortran, C, C++, Java, ...)

Pros
- speed
- large code base (legacy codes)
- tradition

Cons
- (often) complicated build process, recompile after any change
- low-level ⇒ lots of lines to get basic stuff done
- code size ⇒ maintenance problems
- static!

- interpreted or scripting (sh, tcl, matlab, perl, ruby, python, ...)

Pros
- no compiling
- (very) high-level ⇒ a few of lines to get (complex) stuff done
- code size ⇒ easy maintenance
- dynamic!
- (often) large code base

Cons
- many are relatively new
- not known as useful in many scientific communities
- lack of speed
Mixing Languages — Best of Both Worlds

- **low level code** (C or fortran): element matrix evaluations, costly mesh-related functions, . . .
- **high level code** (Python): logic of the code, particular applications, configuration files, problem description files

www.python.org

SfePy = Python + C (+ fortran)

- **notable features:**
 - small size (complete sources are just about 1.3 MB, July 2008)
 - fast compilation
 - problem description files in pure Python
 - problem description form similar to mathematical description “on paper”
Mixing Languages — Best of Both Worlds

- **low level code** (C or fortran): element matrix evaluations, costly mesh-related functions, ...
- **high level code** (Python): logic of the code, particular applications, configuration files, problem description files

www.python.org

SfePy = Python + C (+ fortran)

- notable features:
 - small size (complete sources are just about 1.3 MB, July 2008)
 - fast compilation
 - problem description files in pure Python
 - problem description form similar to mathematical description “on paper”
Software Dependencies

- to install and use SfePy, several other packages or libraries are needed:
 - **NumPy and SciPy**: free (BSD license) collection of numerical computing libraries for Python
 - enables Matlab-like array/matrix manipulations and indexing
 - other: UMFPACK, Pyparsing, Matplotlib, Pytables (+ HDF5), swig
 - visualization of results: ParaView, MayaVi2, or any other VTK-capable viewer

- **missing**:
 - free (BSD license) 3D mesh generation and refinement tool
 - ... can use netgen, tetgen
Software Dependencies

- to install and use SfePy, several other packages or libraries are needed:
 - **NumPy and SciPy**: free (BSD license) collection of numerical computing libraries for Python
 - enables Matlab-like array/matrix manipulations and indexing
 - other: UMFPACK, Pyparsing, Matplotlib, Pytables (+ HDF5), swig
 - visualization of results: ParaView, MayaVi2, or any other VTK-capable viewer

- **missing**:
 - free (BSD license) 3D mesh generation and refinement tool
 - ... can use netgen, tetgen
Introduction

- problem description file is a regular Python module, i.e. all Python syntax and power is accessible
- consists of entities defining:
 - fields of various FE approximations, variables
 - equations in the weak form, quadratures
 - boundary conditions (Dirichlet, periodic, “rigid body”)
 - FE mesh file name, options, solvers, . . .
- simple example: the Laplace equation:

\[c \Delta u = 0 \text{ in } \Omega, \quad u = \bar{u} \text{ on } \Gamma, \text{ weak form: } \int_{\Omega} c \nabla u \cdot \nabla v = 0, \quad \forall v \in V_0 \]
Problem Description File
Solving Laplace Equation — FE Approximations

- **mesh** → define FE approximation to Ω:

 $\text{filename_mesh} = \text{'simple.mesh'}$

- **fields** → define space V_h:

 $$\text{field_1} = \{$$

 'name': 'temperature',
 'dim': (1,1),
 'domain': 'Omega',
 'bases': 'Omega': '3_4_P1'

 $$\}$$

 '3_4_P1' means P1 approximation, in 3D, on 4-node FEs (tetrahedra)

- **variables** → define u_h, v_h:

 $$\text{variables} = \{$$

 'u': ('unknown field', 'temperature', 0),
 'v': ('test field', 'temperature', 'u')

 $$\}$$
Problem Description File
Solving Laplace Equation — FE Approximations

- **mesh** → define FE approximation to \(\Omega \):

  ```
  filename_mesh = 'simple.mesh'
  ```

- **fields** → define space \(V_h \):
  ```
  field_1 = {
    'name': 'temperature',
    'dim': (1,1),
    'domain': 'Omega',
    'bases': 'Omega': '3_4_P1'
  }
  
  '3_4_P1' means P1 approximation, in 3D, on 4-node FEs (tetrahedra)

- **variables** → define \( u_h, v_h \):
  ```
 variables = {
 'u': ('unknown field', 'temperature', 0),
 'v': ('test field', 'temperature', 'u'),
 }
  ```
Problem Description File
Solving Laplace Equation — FE Approximations

- **mesh**: define FE approximation to $\Omega$:
  
  ```python
 filename_mesh = 'simple.mesh'
  ```

- **fields**: define space $V_h$:
  
  ```python
 field_1 = {
 'name': 'temperature',
 'dim': (1,1),
 'domain': 'Omega',
 'bases': 'Omega': '3_4_P1'
 }

 '3_4_P1' means P1 approximation, in 3D, on 4-node FEs (tetrahedra)

- **variables**: define u_h, v_h:

  ```python
  variables = {
    'u': ('unknown field', 'temperature', 0),
    'v': ('test field', 'temperature', 'u'),
  }
  ```
Problem Description File
Solving Laplace Equation — Boundary Conditions

- **regions** → define domain Ω, regions Γ_{left}, Γ_{right}, $\Gamma = \Gamma_{\text{left}} \cup \Gamma_{\text{right}}$:
 - h omitted from now on ...

```python
regions = {
    'Omega': ('all', {}),
    'Gamma_Left': ('nodes in (x < 0.0001)', {}),
    'Gamma_Right': ('nodes in (x > 0.0999)', {}),
}
```

- **Dirichlet BC** → define \bar{u} on Γ_{left}, Γ_{right}:

```python
ebcs = {
    't_left': ('Gamma_Left', 'u.0': 2.0),
    't_right': ('Gamma_Right', 'u.all': -2.0),
}
```
Problem Description File
Solving Laplace Equation — Boundary Conditions

- **regions** → define domain Ω, regions Γ_left, Γ_right, Γ = Γ_left ∪ Γ_right:
 - h omitted from now on . . .

regions = {
 'Omega': ('all', {}),
 'Gamma_Left': ('nodes in (x < 0.0001)', {}),
 'Gamma_Right': ('nodes in (x > 0.0999)', {}),
}

- **Dirichlet BC** → define ¯u on Γ_left, Γ_right:

ebcs = {
 't_left': ('Gamma_Left', 'u.0': 2.0),
 't_right': ('Gamma_Right', 'u.all': -2.0),
}
Problem Description File
Solving Laplace Equation — Equations

- **materials** → define \(c \):

  ```python
  material_1 = {
    'name' : 'm',
    'mode' : 'here',
    'region' : 'Omega',
    'c' : 1.0,
  }
  ```

- **integrals** → define numerical quadrature:

  ```python
  integral_1 = {
    'name' : 'i1',
    'kind' : 'v',
    'quadrature' : 'gauss_o1_d3',
  }
  ```

- **equations** → define what and where should be solved:

  ```python
  equations = {
    'eq' : 'dw_laplace.i1.Omega( m.c, v, u ) = 0'
  }
  ```
Problem Description File
Solving Laplace Equation — Equations

- **materials** → define c:

  ```python
  material_1 = {
    'name' : 'm',
    'mode' : 'here',
    'region' : 'Omega',
    'c' : 1.0,
  }
  ```

- **integrals** → define numerical quadrature:

  ```python
  integral_1 = {
    'name' : 'i1',
    'kind' : 'v',
    'quadrature' : 'gauss_o1_d3',
  }
  ```

- **equations** → define what and where should be solved:

  ```python
  equations = {
    'eq' : 'dw_laplace.i1.Omega( m.c, v, u ) = 0'
  }
  ```
Problem Description File
Solving Laplace Equation — Equations

- **materials** → define \(c \):

  ```python
  material_1 = {
    'name': 'm',
    'mode': 'here',
    'region': 'Omega',
    'c': 1.0,
  }
  ```

- **integrals** → define numerical quadrature:

  ```python
  integral_1 = {
    'name': 'i1',
    'kind': 'v',
    'quadrature': 'gauss_o1_d3',
  }
  ```

- **equations** → define what and where should be solved:

  ```python
  equations = {
    'eq': 'dw_laplace.i1.Omega( m.c, v, u ) = 0'
  }
  ```
$. / s i m p l e . p y i n p u t / p o i s s o n . p y$

sfepy: reading mesh...
sfepy: ...done in 0.02 s
sfepy: setting up domain edges...
sfepy: ...done in 0.02 s
sfepy: setting up domain faces...
sfepy: ...done in 0.02 s
sfepy: creating regions...
sfepy: leaf Gamma_Right region_4
sfepy: leaf Omega region_1000
sfepy: leaf Gamma_Left region_03
sfepy: ...done in 0.07 s
sfepy: equation "Temperature":
sfepy: dw_laplace.i1.Omega(coef.val, s, t) = 0
sfepy: describing geometries...
sfepy: ...done in 0.01 s
sfepy: setting up dof connectivities...
sfepy: ...done in 0.00 s
sfepy: using solvers:

 nls: newton
 ls: ls
sfepy: matrix shape: (300, 300)
sfepy: assembling matrix graph...
sfepy: ...done in 0.01 s
sfepy: matrix structural nonzeros: 3538 (3.93e−02% fill)
sfepy: updating materials...
sfepy: coef
sfepy: ...done in 0.00 s
sfepy: nls: iter: 0, residual: 1.176265e−01 (rel: 1.000000e+00)
sfepy: reidual: 0.00 [s]
sfepy: solve: 0.01 [s]
sfepy: matrix: 0.00 [s]
sfepy: nls: iter: 1, residual: 9.921082e−17 (rel: 8.434391e−16)

- The top level of SfePy code is a collection of executable scripts tailored for various applications.
- `simple.py` is a dumb script of brute force, attempting to solve any equations it finds by the Newton method.
- ...exactly what we need here (solver options were omitted in previous slides).
Top-level Scripts

Main scripts / applications:

- `runTests.py` ... run all/selected unit tests
- `simple.py` ... generic problem solver, both for stationary and time-dependent problems
- `eigen.py` ... application: acoustic band gaps in strongly heterogenous media
- `schroedinger.py` ... application: Schrödinger equation solver

Auxiliary:

- `extractor.py` ... extract results stored in a HDF5 file, dump results to VTK
- `findSurf.py` ... extract a mesh surface, mark its components
- `gen` ... (re-)generate documentation, found in `doc/sfepy_manual.pdf`, requires additional packages: pexpect, lxml
- `genPerMesh.py` ... scale and periodically repeat a reference volume mesh
Top-level Scripts

Main scripts / applications:

- **runTests.py** ... run all/selected unit tests
- **simple.py** ... generic problem solver, both for stationary and time-dependent problems
- **eigen.py** ... application: acoustic band gaps in strongly heterogenous media
- **schroedinger.py** ... application: Schrödinger equation solver

Auxiliary:

- **extractor.py** ... extract results stored in a HDF5 file, dump results to VTK
- **findSurf.py** ... extract a mesh surface, mark its components
- **gen** ... (re-)generate documentation, found in doc/sfepy_manual.pdf, requires additional packages: pexpect, lxml
- **genPerMesh.py** ... scale and periodically repeat a reference volume mesh
Verification of Numerical Results

- to verify numerical results we use method of **manufactured solutions**: for example, for Poisson’s equation \(\text{div}(\text{grad}(u)) = f \):
 1. make up a solution, e.g. \(u = \sin 3x \cos 4y \)
 2. compute corresponding \(f \), here \(f = 25 \sin 3x \cos 4y \), and boundary conditions by substituting \(u \) into the equation
 3. solve numerically and compare the **exact** solution of the strong problem with the numerical solution of the weak problem

\[\rightarrow \] allows to assess both the discretization and numerical errors

- manual derivation of \(f \) tedious \(\rightarrow \) SymPy
 - each term class annotated by a corresponding symbolic expression
 - example: anisotropic diffusion term

\[
\text{symbolic} = \{ \text{'expression': 'div(K * grad(u))'}, \\
\text{'map' : {'u' : 'state', 'K' : 'material'}}\}
\]

- \(f \) is built by substituting the manufactured solution into the expressions and subsequent evaluation in FE nodes
- work in progress
Verification of Numerical Results

- to verify numerical results we use method of manufactured solutions: for example, for Poisson’s equation \(\text{div}(\text{grad}(u)) = f \):
 1. make up a solution, e.g. \(u = \sin 3x \cos 4y \)
 2. compute corresponding \(f \), here \(f = 25 \sin 3x \cos 4y \), and boundary conditions by substituting \(u \) into the equation
 3. solve numerically and compare the exact solution of the strong problem with the numerical solution of the weak problem
 → allows to assess both the discretization and numerical errors
- manual derivation of \(f \) tedious → SymPy
 - each term class annotated by a corresponding symbolic expression
 - example: anisotropic diffusion term

\[
\text{symbolic} = \{ \ 'expression': \ '\text{div}(K * \text{grad}(u))', \\
 'map': \ { 'u': \ 'state', 'K': \ 'material' } \}
\]

- \(f \) is built by substituting the manufactured solution into the expressions and subsequent evaluation in FE nodes
- work in progress
Optimal Flow Problem

Problem Setting

Objective Function

\[\Psi(u) \equiv \frac{\nu}{2} \int_{\Omega_c} |\nabla u|^2 \rightarrow \text{min} \]

- minimize gradients of solution (e.g. losses) in \(\Omega_c \subset \Omega \)
- by moving design boundary \(\Gamma \subset \partial \Omega \)
- perturbation of \(\Gamma \) by vector field \(\mathcal{V} \)

\[\Omega(t) = \Omega + \{ t \mathcal{V}(x) \}_{x \in \Omega} \quad \text{where} \quad \mathcal{V} = 0 \text{ in } \overline{\Omega_c} \cup \partial \Omega \setminus \Gamma \]
Optimal Flow Problem

Example Results

- flow and domain control boxes, left: initial, right: final

- Ω_C between two grey planes

- work in progress . . .
Direct Problem

... paper ↔ input file

- **weak form** of Navier-Stokes equations: \(\mathbf{u} \in V_0(\Omega), p \in L^2(\Omega) \)
 such that

\[
a_\Omega (\mathbf{u}, \mathbf{v}) + c_\Omega (\mathbf{u}, \mathbf{u}, \mathbf{v}) - b_\Omega (\mathbf{v}, p) = g_{\Gamma_{\text{out}}} (\mathbf{v}) \quad \forall \mathbf{v} \in V_0, \\
b_\Omega (\mathbf{u}, q) = 0 \quad \forall q \in L^2(\Omega).
\]

- in **SfePy** syntax:

```python
equations = {
    'balance': "
    dw_div_grad.i2.Omega( fluid.viscosity, v, u )
    + dw_convevt.i2.Omega( v, u )
    - dw_grad.i1.Omega( v, p ) = 0""",
    'incompressibility': "
    dw_div.i1.Omega( q, u ) = 0""",
}
```
Direct Problem

...paper ↔ input file

- **weak form** of Navier-Stokes equations: \(u \in V_0(\Omega), \, p \in L^2(\Omega) \) such that

\[
a_\Omega (u, v) + c_\Omega (u, u, v) - b_\Omega (v, p) = g_{\Gamma_{\text{out}}} (v) \quad \forall v \in V_0, \\
b_\Omega (u, q) = 0 \quad \forall q \in L^2(\Omega).
\]

- in SfePy syntax:

```python
equations = {
    'balance': """"
    dw_div_grad.i2.Omega( fluid.viscosity, v, u )
    + dw_convevt.i2.Omega( v, u )
    - dw_grad.i1.Omega( v, p ) = 0""",
    'incompressibility': """"
    dw_div.i1.Omega( q, u ) = 0""",
}
```
Adjoint Problem

... paper ↔ input file

- **KKT conditions** $\delta_{u,p} \mathcal{L} = 0$ yield adjoint state problem for w, r:

 $$
 \delta_u \mathcal{L} \circ v = 0 = \delta_u \Psi(u, p) \circ v \\
 + a_\Omega(v, w) + c_\Omega(v, u, w) + c_\Omega(u, v, w) + b_\Omega(v, r),
 $$

 $$
 \delta_p \mathcal{L} \circ q = 0 = \delta_p \Psi(u, p) \circ q - b_\Omega(w, q), \forall v \in V_0, \text{ and } \forall q \in L^2(\Omega).
 $$

- in **SfePy** syntax:

  ```python
  equations = {
    'balance': ""
    dw_div_grad.i2.Omega( fluid.viscosity, v, w ) 
    + dw_adj_conve...t2.i2.Omega( v, w, u ) 
    + dw_grad.i1.Omega( v, r ) 
    = - '\delta_u \Psi(u, p) \circ v',

    'incompressibility': ""
    dw_div.i1.Omega( q, w ) = 0"",
  }
  ```
KKT conditions $\delta_{u,p}\mathcal{L} = 0$ yield adjoint state problem for w, r:

$$\delta_u \mathcal{L} \circ v = 0 = \delta_u \Psi(u, p) \circ v$$

$$+ a_\Omega(v, w) + c_\Omega(v, u, w) + c_\Omega(u, v, w) + b_\Omega(v, r) ,$$

$$\delta_p \mathcal{L} \circ q = 0 = \delta_p \Psi(u, p) \circ q - b_\Omega(w, q) , \forall v \in V_0, \text{ and } \forall q \in L^2(\Omega).$$

in SfePy syntax:

```python
equations = {
    'balance': """"""
    dw_div_grad.i2.Omega( fluid.viscosity, v, w )
    + dw_adj_convecept1.i2.Omega( v, w, u )
    + dw_adj_convecept2.i2.Omega( v, w, u )
    + dw_grad.i1.Omega( v, r )
    = - 'δuΨ(u,p)∘v',""",
    'incompressibility': """"""
    dw_div.i1.Omega( q, w ) = 0""",
}
```
Finite Element Formulation of Schrödinger Equation

One particle Schrödinger equation:

$$\left(-\frac{\hbar^2}{2m} \nabla^2 + V\right) \psi = E\psi.$$

FEM:

$$(K_{ij} + V_{ij}) q_j = E M_{ij} q_j + F_i,$$

$$V_{ij} = \int \phi_i V \phi_j \, dV,$$

$$M_{ij} = \int \phi_i \phi_j \, dV,$$

$$K_{ij} = \frac{\hbar^2}{2m} \int \nabla \phi_i \cdot \nabla \phi_j \, dV,$$

$$F_i = \frac{\hbar^2}{2m} \oint \frac{d\psi}{dn} \phi_i \, dS.$$

Usually we set $F_i = 0.$
Particle in the Box

\[V(x) = \begin{cases} 0, & \text{inside the box } a \times a \times a \\ \infty, & \text{outside} \end{cases} \]

Analytic solution:

\[E_{n_1n_2n_3} = \frac{\pi^2}{2a^2} \left(n_1^2 + n_2^2 + n_3^2 \right) \]

where \(n_i = 1, 2, 3, \ldots \) are independent quantum numbers. We chose \(a = 1 \), i.e.: \(E_{111} = 14.804 \), \(E_{211} = E_{121} = E_{112} = 29.608 \),
\(E_{122} = E_{212} = E_{221} = 44.413 \), \(E_{311} = E_{131} = E_{113} = 54.282 \)
\(E_{222} = 59.217 \), \(E_{123} = E_{\text{perm.}} = 69.087 \).

Numerical solution (\(a = 1 \), 24702 nodes):

<table>
<thead>
<tr>
<th>E</th>
<th>1</th>
<th>2-4</th>
<th>5-7</th>
<th>8-10</th>
<th>11</th>
<th>12-</th>
</tr>
</thead>
<tbody>
<tr>
<td>theory</td>
<td>14.804</td>
<td>29.608</td>
<td>44.413</td>
<td>54.282</td>
<td>59.217</td>
<td>69.087</td>
</tr>
<tr>
<td>FEM</td>
<td>14.861</td>
<td>29.833</td>
<td>44.919</td>
<td>55.035</td>
<td>60.123</td>
<td>70.305</td>
</tr>
<tr>
<td></td>
<td>29.834</td>
<td>44.920</td>
<td>55.042</td>
<td>70.310</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29.836</td>
<td>44.925</td>
<td>55.047</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3D Harmonic Oscillator

\[V(r) = \begin{cases} \frac{1}{2} \omega^2 r^2, & \text{inside the box} \quad a \times a \times a \\ \infty, & \text{outside} \end{cases} \]

Analytic solution in the limit \(a \to \infty \):

\[E_{nl} = \left(2n + l + \frac{3}{2} \right) \omega \]

where \(n, l = 0, 1, 2, \ldots \). Degeneracy is \(2l + 1 \), so: \(E_{00} = \frac{3}{2} \), triple \(E_{01} = \frac{5}{2}, E_{10} = \frac{7}{2} \), quintuple \(E_{02} = \frac{7}{2} \) triple \(E_{11} = \frac{9}{2} \), quintuple \(E_{12} = \frac{11}{2} \):

Numerical solution (\(a = 15, \omega = 1, 290620 \) nodes):

<table>
<thead>
<tr>
<th>E</th>
<th>1</th>
<th>2-4</th>
<th>5-10</th>
<th>11-</th>
</tr>
</thead>
<tbody>
<tr>
<td>theory</td>
<td>1.5</td>
<td>2.5</td>
<td>3.5</td>
<td>4.5</td>
</tr>
<tr>
<td>FEM</td>
<td>1.522</td>
<td>2.535</td>
<td>3.554</td>
<td>4.578</td>
</tr>
<tr>
<td></td>
<td>2.536</td>
<td>3.555</td>
<td>4.579</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.536</td>
<td>3.555</td>
<td>4.579</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.555</td>
<td>3.555</td>
<td>4.579</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.556</td>
<td>3.556</td>
<td>4.579</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.556</td>
<td>3.556</td>
<td>4.579</td>
<td></td>
</tr>
</tbody>
</table>
3D Harmonic Oscillator

Eigenvalues:

- 0th
- 10th
- 12th
Hydrogen Atom

\[V(r) = \begin{cases}
-\frac{1}{r}, & \text{inside the box \quad } a \times a \times a \\
\infty, & \text{outside}
\end{cases} \]

Analytic solution in the limit \(a \to \infty \):

\[E_n = -\frac{1}{2n^2} \]

where \(n = 1, 2, 3, \ldots \). Degeneracy is \(n^2 \), so: \(E_1 = -\frac{1}{2} = -0.5 \), \(E_2 = -\frac{1}{8} = -0.125 \), \(E_3 = -\frac{1}{18} = -0.055 \), \(E_4 = -\frac{1}{32} = -0.031 \).

Numerical solution (\(a = 15 \), 160000 nodes):

<table>
<thead>
<tr>
<th>E</th>
<th>1</th>
<th>2.5</th>
<th>6-14</th>
<th>15-</th>
</tr>
</thead>
<tbody>
<tr>
<td>theory</td>
<td>-0.5</td>
<td>-0.125</td>
<td>-0.055</td>
<td>-0.031</td>
</tr>
<tr>
<td>FEM</td>
<td>-0.481</td>
<td>-0.118</td>
<td>-0.006</td>
<td>\ldots</td>
</tr>
</tbody>
</table>
Hydrogen Atom

11th eigenvalue (calculated: -0.04398532, exact: -0.056), on the mesh with 976 691 tetrahedrons and 163 666 nodes, for the hydrogen atom (V=-1/r).
Conclusion

What is done

- basic FE element engine:
 - finite-dimensional approximations of continuous fields
 - variables, boundary conditions, FE assembling
 - equations, terms, regions
 - materials, material caches
- various solvers accessed via abstract interface
- unit tests, automatic documentation generation
- mostly linear problems, but multiphysical

What is not done

- general FE engine, possibly with symbolic evaluation (SymPy)
- good documentation
- fast problem-specific solvers (!)
- adaptive mesh refinement (!)
- parallelization (petsc4py)

What will not be done (?)

- GUI
- real symbolic parsing/evaluation of equations

http://sfepy.org
Conclusion

What is done

- basic FE element engine:
 - finite-dimensional approximations of continuous fields
 - variables, boundary conditions, FE assembling
 - equations, terms, regions
 - materials, material caches
- various solvers accessed via abstract interface
- unit tests, automatic documentation generation
- mostly linear problems, but multiphysical

What is not done

- general FE engine, possibly with symbolic evaluation (SymPy)
- good documentation
- fast problem-specific solvers (!)
- adaptive mesh refinement (!)
- parallelization (petsc4py)

What will not be done (?)

- GUI
- real symbolic parsing/evaluation of equations

http://sfepy.org
Conclusion

What is done

- basic FE element engine:
 - finite-dimensional approximations of continuous fields
 - variables, boundary conditions, FE assembling
 - equations, terms, regions
 - materials, material caches

- various solvers accessed via abstract interface

- unit tests, automatic documentation generation

- mostly linear problems, but multiphysical

What is not done

- general FE engine, possibly with symbolic evaluation (SymPy)

- good documentation

- fast problem-specific solvers (!)

- adaptive mesh refinement (!)

- parallelization (petsc4py)

What will not be done (?)

- GUI

- real symbolic parsing/evaluation of equations

http://sfepy.org
Conclusion

What is done

- basic FE element engine:
 - finite-dimensional approximations of continuous fields
 - variables, boundary conditions, FE assembling
 - equations, terms, regions
 - materials, material caches

- various solvers accessed via abstract interface

- unit tests, automatic documentation generation

- mostly linear problems, but multiphysical

What is not done

- general FE engine, possibly with symbolic evaluation (SymPy)

- good documentation

- fast problem-specific solvers (!)

- adaptive mesh refinement (!)

- parallelization (petsc4py)

What will not be done (?)

- GUI

- real symbolic parsing/evaluation of equations

http://sfepy.org
Acknowledgements

The work on various parts of SfePy has been supported by the following grants and research projects funded by several agencies in the Czech Republic:

- **Robert Cimrman:**
 - grant project GAČR 101/07/1471, entitled “Finite element modelling of linear, non-linear and multiscale effects in wave propagation in solids and heterogeneous media”
 - research project MŠMT 1M06031
 - research project MŠMT 4977751303

- **Ondřej Čertík:**
 - research center project LC06040
 - grant project GAČR IAA100100637
This is not a slide!

1Do you like Monty Python’s Flying Circus? It helps! (Python FAQ 1.1.17)